z-logo
open-access-imgOpen Access
Reversible Photoisomerization in Thin Surface Films from Azo-Functionalized Guanosine Derivatives
Author(s) -
M. Ličen,
Stefano Masiero,
Silvia Pieraccini,
Irena DrevenšekOlenik
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c01879
Subject(s) - photoisomerization , azobenzene , monolayer , isomerization , materials science , brewster's angle , photochemistry , thin film , amphiphile , molecule , chemistry , chemical engineering , nanotechnology , organic chemistry , optics , catalysis , polymer , physics , engineering , brewster , copolymer
Two novel azo-functionalized guanosine derivatives were synthesized, and their photoisomerization process was investigated in molecular monolayers at the air-water interface and in the Langmuir-Blodgett (LB) films on solid substrates. Measurements of surface pressure vs area isotherms, surface potential measurements, UV-visible (vis) absorption spectroscopy, Brewster angle microscopy (BAM), and atomic force microscopy (AFM) were performed. Despite not having a typical amphiphilic molecular structure, the derivatives formed stable films on the water surface. They could also undergo repeated photoisomerization in all of the investigated thin-film configurations. The observations suggest that in the films at the air-water interface, the molecules first exhibit a conformational change, and then they reorient to an energetically more favored orientation. In the LB films transferred onto solid substrates, the isomerization process occurs on a similar time scale as in solution. However, the isomerization efficiency is about an order of magnitude lower than that in solution. Our results show that DNA nucleobases functionalized with azobenzene moieties are suitable candidates for the fabrication of photoactive two-dimensional (2D) materials that can provide all beneficial functionalities of DNA-based compounds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom