z-logo
open-access-imgOpen Access
Atomic Bonding and Electronic Binding Energy of Two-Dimensional Bi/Li(110) Heterojunctions via BOLS-BB Model
Author(s) -
Maolin Bo,
Liangjing Ge,
Jibiao Li,
Lei Li,
Chuang Yao,
Zhongkai Huang
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c05712
Subject(s) - electronic structure , heterojunction , atom (system on chip) , density functional theory , binding energy , materials science , chemical bond , atomic physics , chemistry , electronic density , molecular physics , computational chemistry , physics , optoelectronics , organic chemistry , computer science , embedded system
Combining the bond-order-length-strength (BOLS) and atomic bonding and electronic model (BB model) with density functional theory (DFT) calculations, we studied the atomic bonding and electronic binding energy behavior of Bi atoms adsorbed on the Li(110) surface. We found that the Bi atoms adsorbed on the Li(110) surface form two-dimensional (2D) geometric structures, including letter-, hexagon-, galaxy-, crown-, field-, and cobweb-shaped structures. Thus, we obtained the following quantitative information: (i) the field-shaped structure can be considered the bulk structure; (ii) the field-shaped structure of Bi atom formation has a 5d energy level of 22.727 eV, and in the letter shape structure, this energy is shifted to values greater than 0.342 eV; and (iii) the Bi/Li(110) heterojunction transfers charge from the inner Li atomic layer to the outermost Bi atomic layer. In addition, we analyzed the bonding and electronic dynamics involved in the formation of the Bi/Li(110) heterojunctions using residual density of states. This work provides a theoretical reference for the fine tuning of binding energies and chemical bonding at the interfaces of 2D metallic materials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom