z-logo
open-access-imgOpen Access
Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities, and Challenges
Author(s) -
Huilin Ye,
Weikang Xian,
Ying Li
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c05321
Subject(s) - granularity , computer science , machine learning , process (computing) , artificial intelligence , key (lock) , function (biology) , data science , computer security , evolutionary biology , biology , operating system
Machine learning (ML) has emerged as one of the most powerful tools transforming all areas of science and engineering. The nature of molecular dynamics (MD) simulations, complex and time-consuming calculations, makes them particularly suitable for ML research. This review article focuses on recent advancements in developing efficient and accurate coarse-grained (CG) models using various ML methods, in terms of regulating the coarse-graining process, constructing adequate descriptors/features, generating representative training data sets, and optimization of the loss function. Two classes of the CG models are introduced: bottom-up and top-down CG methods. To illustrate these methods and demonstrate the open methodological questions, we survey several important principles in constructing CG models and how these are incorporated into ML methods and improved with specific learning techniques. Finally, we discuss some key aspects of developing machine-learned CG models with high accuracy and efficiency. Besides, we describe how these aspects are tackled in state-of-the-art methods and which remain to be addressed in the near future. We expect that these machine-learned CG models can address thermodynamic consistent, transferable, and representative issues in classical CG models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom