z-logo
open-access-imgOpen Access
Tentative Confinement of Ionic Liquids in Nylon 6 Fibers: A Bridge between Structural Developments and High-Performance Properties
Author(s) -
Ahmed Dawelbeit,
Muhuo Yu
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c04740
Subject(s) - materials science , crystallinity , crystal (programming language) , fiber , composite material , spinning , phase (matter) , ultimate tensile strength , phase transition , melt spinning , nylon 6 , chemical engineering , polymer , organic chemistry , chemistry , physics , quantum mechanics , computer science , engineering , programming language
A reversible confinement of ionic liquid (IL) among the amide segments has been carried out for the preparation of high-modulus and high-strength aliphatic semicrystalline nylon 6 fibers. In this research work, the suppression or the weakening of the hydrogen bonds during the conventional low-speed melt spinning process is followed by a hot-drawing stage and a subsequent IL extraction of the IL out of the 2% wt IL-confined fibers and an immediate thermal stabilization process for the improvement of the properties of the pristine nylon 6 fibers. The resulted crystal structural developments of the IL-confined fibers are attributed to ultimate molecular orientations, which have contributed to the developments of the overall fiber properties. Here, the influences of the IL on the γ and the α crystal phases, the γ-α transition, the morphological properties, and the tensile properties are investigated. The FTIR reported, experimentally, additional peaks at 1237 cm -1 for the γ crystal phase and at 1417 and 1476 cm -1 for the α crystal phase, in conformity with the theoretical computations. The XRD demonstrated that the conventional low-speed melt spinning can successfully be used to prepare as-spun IL-confined fibers having highly improved properties. The so prepared as-spun IL-confined fibers are found to have a γ phase structure that has a small crystal size and high crystal perfections. Fortunately, the γ-to-α crystal phase transition for the IL-confined nylon 6 fibers can be acquired during the hot-drawing stage (stress-induced phase transformation). Furthermore, the IL extraction process followed by a thermal stabilization process, interestingly, has led to significant increases in both of the tensile strengths and the tensile moduli of the reverted nylon 6 fibers. The values that are found are 8.46 cN/dtex for the tensile strength and 39.09 cN/dtex for the tensile modulus. The structure-property relationships between the IL-confined and the reverted nylon 6 fibers have also been discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom