z-logo
open-access-imgOpen Access
Corn Flour Nano-Graphene Prepared by the Hummers Redox Method
Author(s) -
Weili Wu,
Bowen Yu
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c04722
Subject(s) - graphene , raman spectroscopy , x ray photoelectron spectroscopy , materials science , transmission electron microscopy , graphene nanoribbons , redox , nano , analytical chemistry (journal) , scanning electron microscope , nanotechnology , chemical engineering , chemistry , composite material , organic chemistry , optics , physics , engineering , metallurgy
In view of the current high cost of graphene, the corn flour with rich sources was selected as the raw material to prepare nano-graphene by the hydrazine hydrate (Hummers) redox method. The elements, structure, and morphology of the obtained corn graphene (CG) were studied by the organic element analysis, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. It was found that the carbon content of CG was increased by 37.8% from 57.4% (corn flour) to 95.2% (CG). There was a diffraction peak of graphene on the (002) crystal surface at 23.08°. The D and G peaks of the Raman test were present, and the I D / I G of the peak intensity ratio was 1.19. The lattice distance of the CG sample was larger than that of the commercial graphene (GE), the CG was about three layers with a layer spacing of 1.21 nm, and the CG was thinner than the GE, which proved that the obtained CG was the nano-graphene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom