Targeting Delivery Nanocarriers for (+)-Terrein to Enhance Its Anticancer Effects
Author(s) -
Yao-Yao Jiang,
Fengli Yuan,
Jinwen Li,
Hong-E Wu,
MeiYan Wei,
ChangLun Shao,
Ming Liu,
Guan-Hai Wang
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c04571
Subject(s) - nanocarriers , cytotoxicity , chemistry , apoptosis , chitosan , cancer cell , drug delivery , cancer research , biochemistry , cancer , biology , organic chemistry , in vitro , genetics
As a compound from marine fungi, (+)-terrein showed significant anticancer activity. In this study, (+)-terrein was extracted from the marine-derived fungus and showed significant cytotoxicity against cancer cells, especially in A549 cells. To enhance its anticancer effects, redox-responsive nanocarriers based on folic acid-chitosan decorating the mesoporous silica nanoparticles were designed to control (+)-terrein target delivery into cancer cells. (+)-Terrein was loaded in the holes, and folic acid-chitosan worked as a gatekeeper by disulfide linkage controlling (+)-terrein release in the tumor microenvironment. The (+)-terrein drug delivery systems exhibited cytotoxicity toward A549 cells through induction of apoptosis. The apoptosis effect was confirmed by the increase in the expression of cleaved caspase-3, caspase-9, and PARP. Taken together, this work evaluates for the first time the (+)-terrein delivery system and provides a promising nanomedicine platform for (+)-terrein.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom