z-logo
open-access-imgOpen Access
Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems
Author(s) -
Masahide Sato
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c04159
Subject(s) - lattice (music) , tetrahedron , octahedron , cubic crystal system , hexagonal lattice , materials science , cluster (spacecraft) , condensed matter physics , hexagonal crystal system , isothermal process , crystal structure , crystallography , monte carlo method , molecular physics , chemistry , physics , thermodynamics , mathematics , statistics , antiferromagnetism , computer science , acoustics , programming language
Assuming that the interaction between particles is given by the Kern-Frenkel potential, Monte Carlo simulations are performed to study the clusters and structures formed by one-patch particles in a thin space between two parallel walls. In isothermal-isochoric systems with a short interaction length, tetrahedral tetramers, octahedral hexamers, and pentagonal dipyramidal heptamers are created with increasing patch area. In isothermal-isobaric systems, the double layers of a triangular lattice, which is the (111) face of the face-centered cubic (fcc) lattice, form when the pressure is high. For a long interaction length, a different type of cluster, trigonal prismatic hexamers, is created. The structures in the double layers also changed as follows: a simple hexagonal lattice or square lattice, which is the (100) face of the fcc structure, is created in isothermal-isobaric systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom