z-logo
open-access-imgOpen Access
Adsorption of Hg(II) in an Aqueous Solution by Activated Carbon Prepared from Rice Husk Using KOH Activation
Author(s) -
Zhiyuan Liu,
Yong Sun,
Xinrui Xu,
Jingbo Qu,
Bin Qu
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03992
Subject(s) - adsorption , activated carbon , husk , fourier transform infrared spectroscopy , langmuir adsorption model , x ray photoelectron spectroscopy , wastewater , mercury (programming language) , aqueous solution , chemistry , nuclear chemistry , ionic strength , chemical engineering , environmental engineering , organic chemistry , environmental science , botany , computer science , engineering , biology , programming language
With the development of industry, the discharge of wastewater containing mercury ions posed a serious threat to human health. Using biomass waste as an adsorbent to treat wastewater containing mercury ions was a better way due to its positive impacts on the environment and resource saving. In this research, activated carbon (AC) was prepared from rice husk (RH) by the KOH chemical activation method. The characterization results of scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) showed that rice husk-activated carbon (RHAC) had good pore structure and oxygen-containing functional groups. The influences of contact time, initial concentration of Hg(II), adsorbent dosage, pH, and ionic strength on mercury ion removal were investigated. The Langmuir model was most suitable for the adsorption isotherm of RHAC, and its maximum adsorption capacity for Hg(II) was 55.87 mg/g. RHAC still had a high removal capacity for Hg(II) after five regeneration cycles. RHAC had excellent removal efficiency for mercury ion wastewater. At the same time, RH could be used as a nonpolluting and outstanding characteristic adsorbent material.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom