z-logo
open-access-imgOpen Access
Effect of pH on the Ability of N-Terminal Domain of Human NPC1 to Recognize, Bind, and Transfer Cholesterol
Author(s) -
Shelby M. Baker,
Marharyta Petukh
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03983
Subject(s) - npc1 , endosome , chemistry , ligand (biochemistry) , biophysics , endoplasmic reticulum , transmembrane protein , biochemistry , transmembrane domain , plasma protein binding , membrane , receptor , biology
Niemann-Pick type C1 (NPC1) is a large multidomain transmembrane protein essential for transporting cholesterol (CLR) from late endosomes and lysosomes to the endoplasmic reticulum and other cellular compartments. The lumen-facing N-terminal domain (NTD), involved in direct binding of CLR, is expected to have an optimum activity at acidic pH = 4.5. Here, we show that acidic pH is vital for the functionality of NPC1(NTD) and should be taken into account when studying the protein activity. We applied evolutionary, structural, and physicochemical analyses to decipher the consequences of a change in pH from acidic (pH = 4.5) to neutral (pH = 7.2) on the structural integrity of the NTD and its ability to bind CLR. We revealed that the change in pH from 4.5 to 7.2 increases the potential energy of the protein in both apo- and holo-states making the system less energetically favorable. At neutral pH, the flexibility of the protein in the apo-state is decreased caused by the alteration of specific interactions, which in turn might have a high impact on ligand recognition and binding. In contrast, neutral pH significantly exaggerates the flexibility of the protein with bound CLR that causes a partial exposure of the ligand to the water phase and its mislocation inside the ligand-binding pocket, which might obstruct CLR translocation through the membrane.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom