z-logo
open-access-imgOpen Access
Data-Driven Approaches to Predict Thermal Maturity Indices of Organic Matter Using Artificial Neural Networks
Author(s) -
Zeeshan Tariq,
Mohamed Mahmoud,
Mohamed Abouelresh,
Abdulazeez Abdulraheem
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03751
Subject(s) - wireline , petrophysics , artificial neural network , kerogen , backpropagation , oil shale , well logging , total organic carbon , maturity (psychological) , petroleum engineering , porosity , mineralogy , geology , artificial intelligence , computer science , geotechnical engineering , source rock , chemistry , psychology , telecommunications , paleontology , developmental psychology , structural basin , wireless , environmental chemistry
Prediction of thermal maturity index parameters in organic shales plays a critical role in defining the hydrocarbon prospect and proper economic evaluation of the field. Hydrocarbon potential in shales is evaluated using the percentage of organic indices such as total organic carbon (TOC), thermal maturity temperature, source potentials, and hydrogen and oxygen indices. Direct measurement of these parameters in the laboratory is the most accurate way to obtain a representative value, but, at the same time, it is very expensive. In the absence of such facilities, other approaches such as analytical solutions and empirical correlations are used to estimate the organic indices in shale. The objective of this study is to develop data-driven machine learning-based models to predict continuous profiles of geochemical logs of organic shale formation. The machine learning models are trained using the petrophysical wireline logs as input and the corresponding laboratory-measured core data as a target for Barnett shale formations. More than 400 log data and the corresponding core data were collected for this purpose. The petrophysical wireline logs are γ-ray, bulk density, neutron porosity, sonic transient time, spontaneous potential, and shallow resistivity logs. The corresponding core data includes the experimental results from the Rock-Eval pyrolysis and Leco TOC measurements. A backpropagation artificial neural network coupled with a particle swarm optimization algorithm was used in this work. In addition to the development of optimized PSO-ANN models, explicit empirical correlations are also extracted from the fine-tuned weights and biases of the optimized models. The proposed models work with a higher accuracy within the range of the data set on which the models are trained. The proposed models can give real-time quantification of the organic matter maturity that can be linked with the real-time drilling operations and help identify the hotspots of mature organic matter in the drilled section.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom