Assessment of Zeolite, Biochar, and Their Combination for Stabilization of Multimetal-Contaminated Soil
Author(s) -
Xiaojun Zheng,
Ming Chen,
Junfeng Wang,
Yan Liu,
Yue-Qing Liao,
You-Cun Liu
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03710
Subject(s) - biochar , zeolite , amendment , environmental remediation , husk , environmental chemistry , chemistry , bioavailability , adsorption , soil contamination , cation exchange capacity , soil remediation , soil conditioner , soil water , nuclear chemistry , contamination , environmental science , soil science , catalysis , organic chemistry , pyrolysis , botany , ecology , bioinformatics , political science , law , biology
In this study, the natural zeolite and rice husk biochar were mixed as a combination amendment for metal immobilization in a Cd, Pb, As, and W co-contaminated soil. A 90 day incubation study was conducted to investigate the effects of amendments on toxic metal in soil. Zeolite, biochar, and their combination application increased the soil pH and cation exchange capacity. A combination of amendments decreased the bioavailability of Cd, Pb, As, and W. Besides, the potential drawback of biochar application on As and W release was overcome by the combination agent. Zeolite, biochar, and combination treatment decreased total bioavailability toxicity from 335.5 to 182.9, 250.5, and 143.4, respectively, which means that combination was an optimum amendment for soil remediation. The results of the Community Bureau of Reference sequential extraction and scanning electron microscopy-energy-dispersive spectrometry images confirmed the Cd and Pb adsorption onto biochar. However, As and W immobilization was dominantly controlled by zeolite. It appears that the combination of amendments is an efficient amendment to remediate Cd, Pb, As, and W co-contamination in soil, although the combination of amendments has a lower stabilization rate for W than for zeolite.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom