z-logo
open-access-imgOpen Access
Preparation and Characterization of Additional Metallic Element-Containing Tubular Iron Oxides of Bacterial Origin
Author(s) -
Katsunori Tamura,
Tatsuki Kunoh,
Makoto Nakanishi,
Yoshihiro Kusano,
Jun Takada
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03574
Subject(s) - raman spectroscopy , metal , materials science , characterization (materials science) , ceramic , chemical engineering , catalysis , deposition (geology) , nanotechnology , metallurgy , chemistry , organic chemistry , paleontology , physics , engineering , sediment , optics , biology
Biogenic microtubular iron oxides (BIOXs) derived from Leptothrix spp. are known as promising multifunctional materials for industrial applications such as ceramic pigments and catalyst carriers. Here, we report unprecedented BIOX products with additive depositions of various metallic elements prepared by a newly devised "two-step" method using an artificial culture system of Leptothrix cholodnii strain OUMS1; the method comprises a biotic formation of immature organic sheaths and subsequent abiotic deposition of Fe and intended elements on the sheaths. Chemical composition ratios of the additional elements Al, Zr, and Ti in the respective BIOXs were arbitrarily controllable depending on initial concentrations of metallic salts added to reaction solutions. Raman spectroscopy exemplified an existence of Fe-O-Al linkage in the Al-containing BIOX matrices. Time-course analyses revealed the underlying physiological mechanism for the BIOX formation. These results indicate that our advanced method can contribute greatly to creations of innovative bioderived materials with improved functionalities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom