Epitaxial Crystallization of Poly(ε-caprolactone) on Reduced Graphene Oxide at a Low Shear Rate by In Situ SAXS/WAXD Methods
Author(s) -
Weijun Miao,
Feng Wu,
Shiman Zhou,
Guibin Yao,
Yiguo Li,
Zongbao Wang
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03410
Subject(s) - materials science , nanocomposite , small angle x ray scattering , crystallization , oxide , graphene , polymer , shear rate , chemical engineering , crystallinity , composite material , crystallization of polymers , scattering , nanotechnology , rheology , optics , metallurgy , physics , engineering
The interfacial interaction between polymers and reinforcements has a positive effect on the properties of polymer nanocomposites, and a further study on the evolution of this interfacial interaction under a shear field is conducive to reasonable regulation of the properties of polymer nanocomposites. For this purpose, epitaxial crystallization of poly(ε-caprolactone) (PCL) on reduced graphene oxide (RGO) is investigated by shearing at the shear rate of 3 s -1 by in situ synchrotron radiation. In situ two-dimensional small-angle X-ray scattering (2D SAXS) results suggest that the imposed shear field promotes the orientation of the polymer chains, resulting in the formation of a large periodic structure of PCL on the RGO surface. In addition, higher shear temperatures facilitate the conformational adjustment of the PCL molecular chain on RGO at the shear rate of 3 s -1 , resulting in the formation of thicker lamellae. In situ two-dimensional wide-angle X-ray diffraction (2D WAXD) results show that shear enhances the crystallinity of the PCL/RGO nanocomposite and promotes the oriented growth of epitaxial and bulk crystals. The current findings can improve the understanding of the structural evolution behavior of PCL/RGO nanocomposites after shear and especially enhance dramatically our understanding of the underlying mechanism of influence of shear on interfacial epitaxial crystallization in polymer/graphene nanocomposite systems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom