z-logo
open-access-imgOpen Access
Facile Fabrication of Nickel Aluminum Layered Double Hydroxide/Carbon Nanotube Electrodes Toward High-Performance Supercapacitors
Author(s) -
Kaicheng Luo,
Junjun Zhang,
Wei Chu,
Hui Chen
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03283
Subject(s) - materials science , supercapacitor , pseudocapacitor , layered double hydroxides , carbon nanotube , electrode , composite number , nickel , capacitance , fabrication , hydroxide , electrochemistry , coprecipitation , nanotechnology , composite material , chemical engineering , metallurgy , chemistry , engineering , medicine , alternative medicine , pathology
The electrode, as one of the key components in supercapacitors, has a pivotal effect on the overall performances. In this work, a series of composite electrode materials are proposed via the combination of nickel aluminum layered double hydroxides (NiAl-LDHs) and carbon nanotubes (CNTs). To begin with, materials with different ratios of the two compositions are fabricated with a coprecipitation method. After that, various characterization methods indicate that the NiAl-LDH/CNT composites exhibit an irregular thin platelet structure with a well-constructed conductive network inside. Furthermore, the effect of the CNT ratio on the electrochemical property is subsequently investigated, which proves that the conductive network of CNTs is beneficial for the transport of the electrons and strengthens the platelet structure. The results show that when the amount of CNTs reaches 1.5 wt %, it can yield a high specific capacitance of 2447 F g -1 at 2 A g -1 , with a good cycling stability of 90.1% after 2500 cycles, indicating high application potential in positive electrodes of pseudocapacitors. The synergistic effects of NiAl-LDHs and CNTs are thought to be the main reasons for the good properties of NiAl-LDHs/CNTs composites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom