z-logo
open-access-imgOpen Access
Preparation of Quaternary Ammonium Salt-Modified Chitosan Microspheres and Their Application in Dyeing Wastewater Treatment
Author(s) -
Ping Ke,
Danlin Zeng,
Ke Xu,
Jiawei Cui,
Xin Li,
Guanghui Wang
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03274
Subject(s) - adsorption , methyl orange , langmuir adsorption model , chitosan , ammonium , emulsion , nuclear chemistry , dyeing , wastewater , ammonium chloride , microsphere , salt (chemistry) , materials science , chemistry , chromatography , chemical engineering , organic chemistry , waste management , catalysis , photocatalysis , engineering
An efficient adsorbent (a quaternary ammonium salt-modified chitosan microsphere, CTA-CSM) was synthesized via an emulsion cross-linking reaction between 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA) and chitosan (CS). The adsorption efficiency of the CTA-CSM as an adsorbent was studied using methyl orange dye to evaluate its suitability for wastewater purification. The characterization results showed that the CTA groups were successfully grafted onto the CS microspheres, and the as-prepared CTA-CSM samples exhibited a smooth surface and good dispersibility. The modification of CTA on CTA-CSM significantly improved its ability to remove methyl orange dye. The adsorption process of methyl orange by CTA-CSM was well described by the Langmuir isotherm model and followed the pseudo-second-order kinetic model. Under the optimal conditions, the maximum removal rate (98.9%) and adsorption capacity (131.9 mg/g) of CTA-CSM was higher than those of other previous reports; its removal rate for methyl orange was still up to 87.4% after five recycles. Hence, CTA-CSM is a very promising material for practical dyeing wastewater purification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom