Removal of Drugs in Polluted Waters with Char Obtained by Pyrolysis of Hair Waste from the Tannery Process
Author(s) -
Francisco Rodríguez,
Carolina Montoya-Ruíz,
Idoia Estiati,
Juan F. Saldarriaga
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02768
Subject(s) - char , pyrolysis , chemistry , wastewater , pulp and paper industry , environmental chemistry , waste management , environmental science , organic chemistry , environmental engineering , engineering
The presence and final destination of pharmaceutical compounds in waters constitute one of the emerging events in current environmental chemistry. Two widely consumed compounds have been evaluated in this study, amoxicillin (AMOX) and diclofenac (DFC), at a concentration of 200 mg L -1 . The presence of both in wastewater has been verified, generating problems in ecosystems and human health. Pyrolysis of hair waste from a tannery process was performed in a fixed-bed reactor. Char was obtained at different operating temperatures (300, 350, 400, and 450 °C), which underwent a characterization of heavy metals and elemental composition. An activation process was applied to the char obtained at 450 °C by means of physicochemical processes and with two chemical agents (KOH and K 2 CO 3 ). For the removal of drugs, two separate tests were performed, one for 28 days and the other one for 4 h, to assess the efficiency and the percentage of removal. It was found that the char obtained at 450 °C is the one that removes most of both compounds: more than 90% of AMOX and more than 80% of DFC.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom