Spinach-Derived Porous Carbon Nanosheets as High-Performance Catalysts for Oxygen Reduction Reaction
Author(s) -
Xiaojun Liu,
Casey Culhane,
Wenyue Li,
Shouzhong Zou
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02673
Subject(s) - catalysis , carbon fibers , methanol , materials science , chemical engineering , porosity , electrochemistry , metal , nitrogen , oxygen , inorganic chemistry , nanotechnology , chemistry , electrode , organic chemistry , metallurgy , composite material , composite number , engineering
Biomass-derived porous carbon materials are effective electrocatalysts for oxygen reduction reaction (ORR), with promising applications in low-temperature fuel cells and metal-air batteries. Herein, we developed a synthesis procedure that used spinach as a source of carbon, iron, and nitrogen for preparing porous carbon nanosheets and studied their ORR catalytic performance. These carbon sheets showed a very high ORR activity with a half-wave potential of +0.88 V in 0.1 M KOH, which is 20 mV more positive than that of commercial Pt/C catalysts. In addition, they showed a much better long-term stability than Pt/C and were insensitive to methanol. The remarkable ORR performance was attributed to the accessible high-density active sites that are primarily from Fe-N x moieties. This work paves the way toward the use of metal-enriching plants as a source for preparing porous carbon materials for electrochemical energy conversion and storage applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom