Biofilm-Related, Time-Series Transcriptome and Genome Sequencing in Xylanase-Producing Aspergillus niger SJ1
Author(s) -
Wenjun Sun,
Li Liu,
Ying Yu,
Bin Yu,
Caice Liang,
Hanjie Ying,
Dong Liu,
Yong Chen
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02501
Subject(s) - aspergillus niger , xylanase , biofilm , transcriptome , biochemistry , biology , gene , chemistry , enzyme , gene expression , genetics , bacteria
In this study, we found that biofilm formation is a critical factor affecting the activity of Aspergillus niger SJ1 xylanase. Xylanase activity increased 8.8% from 1046.88 to 1147.74 U/mL during A. niger SJ1 immobilized fermentation with biofilm formation. Therefore, we carried out the work of genomic analysis and biofilm-related time-series transcriptome analysis of A. niger SJ1 for better understanding of the ability of A. niger SJ to produce xylanase and biofilm formation. Genome annotation results revealed a complete biofilm polysaccharide component synthesis pathway in A. niger SJ1 and five proteins regarding xylanase synthesis. In addition, results of transcriptome analysis revealed that the genes involved in the synthesis of cell wall polysaccharides and amino acid anabolism were highly expressed in the biofilm. Furthermore, the expression levels of major genes in the gluconeogenesis pathway and mitogen-activated protein kinase pathway were examined.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom