z-logo
open-access-imgOpen Access
Chemical Transformation of Astaxanthin from Haematococcus pluvialis Improves Its Antioxidative and Anti-inflammatory Activities
Author(s) -
Sung Hyun Hwang,
Ji Min Kim,
Seokjoon Kim,
Min Jin Yoon,
Ki Soo Park
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02479
Subject(s) - astaxanthin , haematococcus pluvialis , antioxidant , chemistry , high performance liquid chromatography , antioxidant capacity , food science , anti inflammatory , biochemistry , chromatography , carotenoid , pharmacology , biology
Astaxanthin is a strong antioxidant, but the effect of esterification on its biological activities remains unclear. Here, we chemically synthesized three forms of astaxanthin (nonesterified (Ast-N), monoesterified (Ast-mE), and diesterified (Ast-dE) forms) using esterified astaxanthin (Ast-E) in natural extract from Haematococcus pluvialis and characterized them by spectrophotometry and high-performance liquid chromatography (HPLC). Additionally, the antioxidant and anti-inflammatory activities of the samples containing three forms of astaxanthin at different ratios were evaluated. The sample containing the maximum level of Ast-mE compared to those of Ast-N and Ast-dE showed the highest antioxidant and anti-inflammatory activities. We also observed the greatest increase in expression of genes related to antioxidant and anti-inflammatory effects in samples containing the highest Ast-mE. These results provide a foundation for in-depth investigation of astaxanthin and other antioxidant molecules, allowing for the development of a practical and cost-effective strategy to improve antioxidant or anti-inflammatory activities of natural extracts that can be used as dietary supplements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom