Features of the Influence of a DNA Sequence on Its Adjacent Sequence
Author(s) -
Lijuan Long,
Xinxin Li,
Hailang Wei,
Wei Li
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02264
Subject(s) - sequence (biology) , biology , dna , genetics , sequence logo , consensus sequence , sequence analysis , complete sequence , dna sequencing , ecori , plasmid , base sequence , gene , genome
To explore the features of the influence of a DNA sequence (here called sequence A) on its adjacent sequence (here called sequence B), we linked some DNA repeated sequences to the 5'-end of the T7 promoter in the plasmid pET-42a (+) or the 5'- and/or 3'-end(s) of the EcoRI site in some DNA fragments using PCR and other molecular cloning methods. As a result, we found that the efficiency of the T7 promoter and EcoRI could be impacted by some flanking sequences, indicating that sequence B could be impacted by sequence A. The features of such influence include the following: (i) sequence A can directly impact sequence B without changing/modifying the base composition of sequence B or destroying the inherent connection between sequence B and its function-related sequences; (ii) such influence does not need the participation of trans-acting factors or products of sequence A (if any); (iii) such an influence might be undetectable when the activities of trans-acting factors of sequence B are normal but might become detectable when those are lower than the normal one; (iv) such an influence might be enhancive, inhibitory, or unobvious; (v) the influence of sequence A linked to the 5'-end of sequence B might be the same as or opposite to that of sequence A linked to the 3'-end; and (vi) the influences of sequence A linked to different ends of sequence B could enhance or partially offset each other when sequence A is linked to both 5'- and 3'-ends of sequence B. These findings might give us a further understanding of the interaction of two adjacent DNA sequences.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom