z-logo
open-access-imgOpen Access
Direct Plasma Deposition of Collagen on 96-Well Polystyrene Plates for Cell Culture
Author(s) -
Denis O’Sullivan,
Liam O’Neill,
Paula Bourke
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02073
Subject(s) - coating , polystyrene , materials science , plasma , characterization (materials science) , gravimetric analysis , deposition (geology) , composite material , chemistry , nanotechnology , polymer , organic chemistry , paleontology , physics , quantum mechanics , sediment , biology
A cold atmospheric plasma unit was used to deposit a biologic, in this case collagen, onto a surface. A collagen coating was applied to 96-well polystyrene plates at a range of powers to determine the effects of the plasma power on the coating structure and viability. Plasma characterization was carried out using voltage, current, and power measurements. Coating characterization was completed using gravimetric measurement, cell growth, water contact angle, as well as spectroscopic analysis and compared to commercial collagen-coated plates. Cell culture studies were also undertaken. The plasma coating matched the performance of the commercial plate but dramatically reduced production time and cost. This method could allow for automated inline production of collagen-coated plates for cell culture applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom