z-logo
open-access-imgOpen Access
Comparison between Benzothiadizole–Thiophene- and Benzothiadizole–Furan-Based D–A−π–A Dyes Applied in Dye-Sensitized Solar Cells: Experimental and Theoretical Insights
Author(s) -
Walid Sharmoukh,
Jiayan Cong,
Basant A. Ali,
Nageh K. Allam,
Lars Kloo
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02060
Subject(s) - dye sensitized solar cell , thiophene , homo/lumo , furan , acceptor , linker , photochemistry , conjugated system , density functional theory , energy conversion efficiency , materials science , chemistry , optoelectronics , computational chemistry , organic chemistry , molecule , polymer , electrode , physics , computer science , electrolyte , condensed matter physics , operating system
Three novel donor-acceptor-π-acceptor-type compounds (WS5, WS6, and WS7) were synthesized and investigated in dye-sensitized solar cells (DSSCs) exploring the effect of conjugated linkers on device performance. The new dyes showed strong light-harvesting ability in the visible region with relatively high molar absorption coefficients (>21 800 M -1 cm -1 ). This can be attributed to their intrinsic charge transfer (CT) from the arylamine to the acceptor group. Density functional theory (DFT) calculations revealed a favorable lowest unoccupied molecular orbital (LUMO) energy level, allowing efficient injection into the semiconductor conduction band after excitation. Upon application in DSSC devices, the WS5 dye containing 4,7-di(furan-2-yl)benzo[ c ][1,2,5]thiadiazole as conjugated linker mediated the highest device power conversion efficiency (PCE) amounting to 5.5%. This is higher than that of the WS6-containing dye based on the 4,7-di(thiophen-2-yl)benzo[ c ][1,2,5]thiadiazole linker (3.5%) and the WS7 dye based on the 4-(thiophen-2-yl)benzo[ c ][1,2,5]thiadiazole linker (4.3%) under AM 1.5 G illumination. The present results show furan-based dye linker systems to have a significant potential for improving DSSC efficiencies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom