z-logo
open-access-imgOpen Access
Adsorption Separation of Cr(VI) from a Water Phase Using Multiwalled Carbon Nanotube-Immobilized Ionic Liquids
Author(s) -
Lihan Sun,
Mengru Wang,
Wei Li,
Sha Luo,
Yan Wu,
Chunhui Ma,
Shouxin Liu
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02016
Subject(s) - adsorption , thermogravimetric analysis , ionic liquid , freundlich equation , carbon nanotube , fourier transform infrared spectroscopy , chemistry , titration , x ray photoelectron spectroscopy , activated carbon , ionic strength , c4mim , nuclear chemistry , chemical engineering , materials science , inorganic chemistry , organic chemistry , aqueous solution , nanotechnology , catalysis , engineering
Three types of multiwalled carbon nanotubes (MWCNTs, MWCNTs-OH, and MWCNTs-COOH) were used as carriers and five types of ionic liquids (ILs) were immobilized on each carrier by an impregnation method. Boehm titration, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, specific surface area analysis by the Brunauer-Emmett-Teller method, and thermogravimetric analysis were performed to investigate [C4mim]HSO 4 adsorption by the MWCNTs. The MWCNT-immobilized IL was used for Cr(VI) removal from a water phase. The adsorption properties of MWCNTs-COOH-immobilized [C4mim]HSO 4 were investigated by single-factor analysis. The results showed that the Cr(VI) removal rate was 52.14% and the adsorption capacity was 31.29 mg/g. The optimum adsorption conditions were as follows: initial Cr(VI) concentration, 60 mg/L; adsorbent dosage, 50 mg; pH 2.0; adsorption temperature 40 °C; and adsorption time, 200 min. Adsorption isotherm data fitted the Freundlich model, which indicates that the adsorption process was in line with the multimolecular layer adsorption theory. The Cr(VI) adsorption behaviors of the three adsorbents were consistent with a pseudo-second-order dynamic model. Thermodynamic analysis of the reaction systems was also performed. The Cr(VI) removal rates of MWCNTs-3, MWCNTs-OH-3, and MWCNTs-COOH-3 were 27.97, 9.39, and 7.34% lower than the initial removal rates after five cycles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom