Development of a Microfluidic Method to Study Enhanced Oil Recovery by Low Salinity Water Flooding
Author(s) -
Marzieh Saadat,
Peichun Amy Tsai,
Tsai-Hsing Martin Ho,
Gisle Øye,
Marcin Dudek
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02005
Subject(s) - brine , micromodel , petroleum engineering , enhanced oil recovery , porous medium , saturation (graph theory) , environmental science , dilution , oil in place , materials science , porosity , geotechnical engineering , geology , chemistry , petroleum , thermodynamics , physics , mathematics , organic chemistry , combinatorics , paleontology
Microfluidics is an appealing method to study processes at rock pore scale such as oil recovery because of the similar size range. It also offers several advantages over the conventional core flooding methodology, for example, easy cleaning and reuse of the same porous network chips or the option to visually track the process. In this study, the effects of injection rate, flood volume, micromodel structure, initial brine saturation, aging, oil type, brine concentration, and composition are systematically investigated. The recovery process is evaluated based on a series of images taken during the experiment. The remaining crude oil saturation reaches a steady state after injection of a few pore volumes of the brine flood. The higher the injection rate, the higher the emulsification and agitation, leading to unstable displacement. Low salinity brine recovered more oil than the high salinity brine. Aging, initial brine saturation, and the presence of divalent ions in the flood led to a decrease in the oil recovery. Most of the tests in this study showed viscous fingering. The analysis of the experimental parameters allowed to develop a reliable and repeatable procedure for microfluidic water flooding. With the method in place, the enhanced oil recovery test developed based on different variables showed an increase of up to 2% of the original oil in place at the tertiary stage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom