z-logo
open-access-imgOpen Access
Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces
Author(s) -
Zitao Song,
Mingxiang Lu,
Xuemei Chen
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01995
Subject(s) - wetting , coalescence (physics) , condensation , materials science , heat transfer , copper , heat transfer enhancement , enhanced heat transfer , heat transfer coefficient , chemical engineering , nanotechnology , thermodynamics , composite material , metallurgy , physics , astrobiology , engineering
Heterogeneous surfaces with wetting contrast have gained extensive attention in recent years because of their potential application in condensation heat transfer enhancement. In this work, we engineered superhydrophobic/hydrophilic hybrid (SHH) surfaces on copper substrates via a laser-ablation process. We demonstrated that the as-fabricated SHH surfaces present dropwise condensation behavior; the condensate droplet growth, departure, and heat transfer performance depend strongly on the spacing of the hydrophilic spot. The surface with the hydrophilic spot spacing of 100 μm (SHH100) exhibits the most efficient dropwise condensation in terms of fast droplet growth rate, efficient coalescence-induced droplet departure, as well as enhanced heat transfer coefficient (HTC) compared to the homogeneous superhydrophobic (SHPo) surface. The mechanism underlying the enhanced condensation heat transfer performance is analyzed. A 12% enhancement on condensation HTC was found was found on SHH100 surface compared with the SHPo surface. Our results provide important insights for the design of hybrid surfaces with wetting contrast for enhancing condensation heat transfer performance in many industrial applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom