Forensic Phenotype Profiling Based on the Attenuated Total Reflection Fourier Transform-Infrared Spectroscopy of Blood: Chronological Age of the Donor
Author(s) -
Samantha Giuliano,
Ewelina Mistek,
Igor K. Lednev
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01914
Subject(s) - attenuated total reflection , chemometrics , infrared spectroscopy , profiling (computer programming) , linear discriminant analysis , spectroscopy , partial least squares regression , fourier transform infrared spectroscopy , forensic science , chemistry , analytical chemistry (journal) , pattern recognition (psychology) , mathematics , artificial intelligence , chromatography , statistics , computer science , biology , optics , genetics , organic chemistry , physics , quantum mechanics , operating system
Forensic chemistry is an important and rapidly growing branch of analytical chemistry. As a part of forensic practices, phenotype profiling is beneficial to help narrow down suspects. The goal of this study is to identify a person's age range using dried bloodstains. Attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy is the technique used to acquire information about the total (bio)chemical composition of a sample. For the purpose of this proof-of-concept study, a diverse pool of donors including those in newborn (<1), adolescent (11-13), and adult (43-68) age ranges was used. Different donor age groups were found to have different levels of lipids, glucose, and proteins in whole blood, although the corresponding spectral differences were minor. Therefore, the collected data set was analyzed using chemometrics to enhance discrepancy and assist in donors' classification. A partial least squares discriminant analysis (PLSDA) was used to classify ATR FT-IR spectra of blood from newborn, adolescent, and adult donors. The method showed a 92% correct classification of spectra in leave-one-out cross-validation (LOOCV) of the model. Overall, ATR FT-IR spectroscopy is nondestructive and can be an infield method that can be used for a variety of forensic applications. In general, the developed approach combining ATR FT-IR spectroscopy and advanced statistics shows the great potential for classifying (bio)chemical samples exhibiting significant intra-class variations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom