Tunable Metallogels Based on Bifunctional Ligands: Precursor Metallogels, Spinel Oxides, Dye and CO2 Adsorption
Author(s) -
Noohul Alam,
Debajit Sarma
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01710
Subject(s) - spinel , adsorption , chemistry , bifunctional , chemical engineering , amide , inorganic chemistry , organic chemistry , materials science , polymer chemistry , catalysis , engineering , metallurgy
A semisolid gel material is a gift of serendipity via various chemical interactions, and metal incorporation (metallogels) imparts diverse functional properties. In this work, we have synthesized four metallogels from tetrapodal and hexapodal carboxylic acid/amide-based low-molecular-weight gelators with Ni(II) and Cu(II) salts. These metallogels can be tuned to be a low-temperature precursor of porous spinel oxides. These xerogels exhibit impressive water soluble dye and carbon dioxide adsorption, which coupled with the tunability and facile synthesis of porous spinel oxides underscores their potential in environmental remediation and energy applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom