Numerical Analysis of Airflow Fields from New Melt-Blowing Dies for Dual-Slot Jets
Author(s) -
Yudong Wang,
Jianping Zhou,
Xiaoping Gao
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01668
Subject(s) - airflow , die (integrated circuit) , cuboid , head (geology) , materials science , flow (mathematics) , turbulence , mechanics , internal flow , work (physics) , mechanical engineering , computational fluid dynamics , computer simulation , physics , engineering , geology , geomorphology
The melt-blowing process uses high-speed and high-temperature airflow from the die head to draw polymer melt into micron-sized fibers. In this work, to reduce the diameter of the melt-blowing fibers, three new slot dies have been designed based on the common slot die. With computational fluid dynamics technology, the two-dimensional flow fields from these new types of slot dies were numerically calculated. To verify the validity of the calculation, the simulation data was compared with the experimental data. The numerical result shows that the internal flow stabilizers could increase the velocity peak and the pressure peak on the centerline of the flow field and could reduce the reverse velocity, temperature decay, and maximum value of turbulence intensity near the die head. Compared with the common slot die, the slot dies with cuboid bosses could increase the air velocity and temperature on the spinning line in most areas and reduce the air pressure within 1.5 cm below the die. The slot dies with internal flow stabilizers and cuboid bosses have the optimal flow field performance and would be beneficial to the production of thinner fibers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom