z-logo
open-access-imgOpen Access
Ligand Effects of BrettPhos and RuPhos on Rate-Limiting Steps in Buchwald–Hartwig Amination Reaction Due to the Modulation of Steric Hindrance and Electronic Structure
Author(s) -
Jiaqi Tian,
Gaobo Wang,
ZhengHang Qi,
Jing Ma
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01528
Subject(s) - oxidative addition , steric effects , amination , chemistry , reductive elimination , catalysis , ligand (biochemistry) , rate determining step , density functional theory , electronic effect , combinatorial chemistry , photochemistry , medicinal chemistry , computational chemistry , stereochemistry , organic chemistry , biochemistry , receptor
The differences in catalytic activity between two catalyst ligands of Buchwald-Hartwig amination reaction, BrettPhos versus RuPhos, were investigated using density functional theory (DFT) calculations. The reaction process consists of three consecutive steps: (1) oxidative addition, (2) deprotonation, and (3) reductive elimination. Among them, the rate-limiting step of Pd-BrettPhos catalytic system is oxidative addition but that of Pd-RuPhos catalytic system is reductive elimination due to their differences in steric hindrance and electronic structure. It was also revealed that amines with large-size substituents or halides with electron-withdrawing groups would reduce the activation energy barriers of the reactions. The insights gained from the calculations of the Buchwald-Hartwig amination reaction would be helpful for the rational designing of new catalysts and reactions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom