Purification and Characterization of Novel Collagen Peptides against Platelet Aggregation and Thrombosis from Salmo salar
Author(s) -
Yijie Yang,
Bo Wang,
Qi Tian,
Бо Лі
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01340
Subject(s) - chemistry , platelet , thrombus , ic50 , pharmacology , immune system , biochemistry , hydrolysis , peptide , coagulation , in vitro , medicine , immunology
Collagen is a rich source of bioactive peptides and is widely distributed in the skin and bone tissue. In this study, collagen from Salmo salar skin was hydrolyzed with Alcalase or Protamex followed by simulated digestion, YMC ODS-A C18 separation, and ESI-MS/MS analysis. A total of 19 peptides were identified and synthesized for investigation of their antiplatelet activities. Hyp-Gly-Glu-Phe-Gly (OGEFG) and Asp-Glu-Gly-Pro (DEGP) exhibited the most potent activity against ADP-induced platelet aggregation among them with IC 50 values of 277.17 and 290.00 μM, respectively, and inhibited the release of β-TG and 5-HT in a dose-dependent manner significantly. Single oral administration of OGEFG and DEGP also inhibited thrombus formation in a ferric chloride-induced arterial thrombosis model at a dose of 200 μmol/kg body weight and did not prolong the bleeding time or cause an immune response in mice. Therefore, our findings indicated that collagen peptides had a potential to be developed into an effective specific medical food in the prevention of thrombotic diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom