z-logo
open-access-imgOpen Access
Movement and Fate of 2,4-D in Urban Soils: A Potential Environmental Health Concern
Author(s) -
Islam Md Meftaul,
Kadiyala Venkateswarlu,
Rajarathnam Dharmarajan,
Prasath Annamalai,
Mallavarapu Megharaj
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01330
Subject(s) - sorption , soil water , freundlich equation , organic matter , desorption , environmental chemistry , langmuir , groundwater , leaching (pedology) , chemistry , soil science , environmental science , soil organic matter , adsorption , environmental engineering , geology , geotechnical engineering , organic chemistry
The fate and movement of 2,4-dichlorophenoxyacetic acid (2,4-D), in terms of sorption-desorption and leaching potential, were evaluated in urban soils following the batch experimental method. The sorption kinetics of 2,4-D in soils followed both "fast" and "slow" sorption processes that could be well described by a pseudo-second-order kinetics model, suggesting that 2,4-D was partitioned into soil organic matter and clay surfaces, and eventually diffused into soil micropores. The sorption isotherms were linear, following both Langmuir and Freundlich models. Partially decomposed or undecomposed organic matter present in urban soils decreased sorption and increased desorption of 2,4-D. Also, sorption of 2,4-D increased with an increase in the contents of clay and Al and Fe oxides, whereas sand and alkaline pH increased the desorption process. The lower calculated K d values suggest that 2,4-D is highly mobile in urban soils than in agricultural soils. The calculated values of groundwater ubiquity score, leachability index, and hysteresis index indicated that the herbicide is highly prone to leach out from surface soil to groundwater which might affect the quality of potable water. The present study clearly suggests that 2,4-D must be judiciously applied in the urban areas in order to minimize the potential health and environmental risks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom