High-Performance Flocculants for Purification: Solving the Problem of Waste Incineration Bottom Ash and Unpurified Water
Author(s) -
Fan Luo,
Ziqian Wu,
Mingjie Wang,
Xugang Shu,
Puyou Jia,
Qiaoguang Li
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01296
Subject(s) - flocculation , incineration , zeta potential , chemical engineering , chemistry , sulfate , waste management , materials science , pulp and paper industry , nanoparticle , organic chemistry , engineering
The silicon-aluminum-iron flocculant (PAFSi) combines the most abundant resources of waste incineration bottom ash and unpurified water, being regarded as one of the most promising approaches toward water purification. Herein, in this research, waste incineration bottom ash was employed to produce a cost-effective and highly efficient flocculant. PAFSi with a particle size of 214 nm and a zeta potential of 8.63 mV reached the optimum performance using a dosage of 2 mL/50 mL at pH from 8 to 11. The results with the copolymer exhibited the following: (1) a good flocculation efficiency over a wide pH range, (2) superior flocculation performance compared to those of polyaluminum chloride and polyferric sulfate, (3) three-dimensional branching structure of PAFSi micelles with a high aggregation degree, (4) charge neutralization and bridging as the main flocculation mechanism, and (5) recycling the floc. Thus, this work provides an attractive solution to the pressing global clean water shortage problem.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom