z-logo
open-access-imgOpen Access
Using Diazotization Reaction to Develop Portable Liquid-Crystal-Based Sensors for Nitrite Detection
Author(s) -
Tsung Yang Ho,
Yi-Hsuan Lan,
Jhih-Wei Huang,
Jung-Jung Chang,
ChihHsin Chen
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01233
Subject(s) - homeotropic alignment , nitrite , liquid crystal , aqueous solution , detection limit , chemistry , substrate (aquarium) , tap water , chromatography , materials science , organic chemistry , optoelectronics , engineering , environmental engineering , nitrate , geology , oceanography
A liquid-crystal (LC)-based sensor for detecting nitrite in aqueous solutions was developed using a diazotization reaction as the sensing mechanism. First, tetradecyl 4-aminobenzoate (14CBA) was synthesized and doped into a nematic LC, i.e., 4-cyano-4'-pentylbiphenyl (5CB). When the LC mixture was cast on a glass substrate and then immersed into an aqueous solution without nitrite, the orientation of LC was planar and the LC image was bright. In the presence of nitrite, it reacted with alkylanilines to give corresponding diazonium ions with a positive charge, which aligned at the LC/aqueous interface to cause homeotropic orientation of LC. As a result, a bright-to-dark transition of the LC image was observed. The limit of detection (LOD) of this system for nitrite is 25 μM with high selectivity. In addition, this system can work in environmental water samples such as tap water and pond water. Finally, we demonstrated that the optical signals of LC can be measured and recorded using a built-in digital camera of a smartphone, suggesting the portability of this system for on-site applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom