z-logo
open-access-imgOpen Access
Phosphorous-Doped Graphitic Material as a Solid Acid Catalyst for Microwave-Assisted Synthesis of β-Ketoenamines and Baeyer–Villiger Oxidation
Author(s) -
Sayantan Maity,
Farsa Ram,
Basab Bijayi Dhar
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01231
Subject(s) - catalysis , baeyer–villiger oxidation , chemistry , yield (engineering) , hydrogen peroxide , heteroatom , phosphoric acid , organic chemistry , nuclear chemistry , inorganic chemistry , materials science , ring (chemistry) , metallurgy
Synthesis of phosphorous-doped graphitic materials (P-Gc) using phytic acid as a precursor was done in a microwave oven in a cost- and time-effective green way. The material was used as a solid acid catalyst for microwave (MW)-assisted synthesis of β-ketoenamines and Baeyer-Villiger (BV) oxidation. In the case of BV oxidation, hydrogen peroxide (H 2 O 2 ) was used as a green oxidant. For β-ketoenamines, in most cases, 100% conversion with an ∼95% yield was achieved in ethyl acetate medium. In solvent-free conditions, the yield of β-ketoenamines was ∼75%. A kinetic study suggested that the resonance stabilization of the positive reaction center happens in the transition state for β-ketoenamine synthesis. In BV oxidation, cyclic ketones were converted to their corresponding cyclic esters in good to high yields (∼80% yield) in a shorter reaction time (6-20 min). As per our knowledge, this is the first report of BV oxidation catalyzed by a heteroatom-doped graphitic material. For BV oxidation, the phosphoric acid functional groups present in P-Gc might increase the electrophilicity of the carbonyl group of the ketones to compensate for the weakness of H 2 O 2 as a nucleophile and a spiro-bisperoxide intermediate has been identified in high-resolution mass spectrometry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom