Multifunctional Alginate Hydrogel Protects and Heals Skin Defects in Complex Clinical Situations
Author(s) -
Wei Lu,
Dongyan Bao,
Fangxin Ta,
Danping Liu,
Dezhi Zhang,
Zheng Zhang,
Zhongkai Fan
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01108
Subject(s) - wound healing , granulation tissue , biomedical engineering , soft tissue , angiogenesis , medicine , surgery
Skin defects, soft tissue damage, and fractures often occur simultaneously in severe trauma. Under current medical technology, fractures can be quickly fixed by internal or external repair techniques, and early functional exercises can be performed. However, skin defects heal over a long time and can even be difficult to heal. Functional exercise may cause cutting of fresh granulation to break and impair wound healing. Functional exercise and wound healing seem to contradict each other. In this study, an alginate hydrogel was developed. With self-healing characteristics, the hydrogel tightly adhered to the wound and could self-heal breaks in the gel caused by functional exercises. These characteristics enable this hydrogel to be used in complex clinical situations to solve sports rehabilitation and skin defect repair problems. In addition, this hydrogel can slowly release strontium ions, promote angiogenesis and collagen deposition in the wound, and quickly heal the wound.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom