z-logo
open-access-imgOpen Access
Construction a Long-Circulating Delivery System of Liposomal Curcumin by Coating Albumin
Author(s) -
Xue-Qin Wei,
Kai Ba
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00930
Subject(s) - curcumin , bovine serum albumin , liposome , albumin , drug delivery , chemistry , phagocytosis , chromatography , biochemistry , medicine , immunology , organic chemistry
Although the bioavailability and stability of curcumin can be greatly improved by liposomes encapsulation, its application is still limited due to the short circulating time. In this present work, we aim to construct a long-circulating delivery system of liposomal curcumin (Cur-Lips) by coating bovine serum albumin (BSA), namely, BSA-coated liposomal curcumin (BSA-Cur-Lips). The effects of coating albumin on the physicochemical properties of Cur-Lips were investigated. It was found that BSA-Cur-Lips was more spherical, more homogeneous in size, and significantly larger than Cur-Lips. Combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Coomassie bright blue staining, and X-ray photoelectron spectroscopy analysis (XPS), we confirmed that albumin molecules were stably located on the surface of BSA-Cur-Lips. In addition, the impacts of the coating albumin on the Cur-Lips release and phagocytosis by mouse macrophages Raw264.7 in vitro were investigated. We found that no significant initial burst drug release effect was observed for both Cur-Lips and BSA-Cur-Lips and the presence of albumin can enhance the liposome structure stability and slow down the release of Cur. More importantly, the macrophage phagocytosis of Cur-Lips was significantly reduced after coating albumin. In conclusion, coating albumin is a promising approach for developing a long-circulating delivery system of liposomal curcumin, and its properties including low phagocytosis, slow drug release, enhanced stability, and nontoxicity give this system great prospects for practical use.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom