Low-Temperature Oxidation Reactivity of Low-Rank Coals and Their Petrographic Properties
Author(s) -
Dae-Gyun Lee,
Yanuar Yudhi Isworo,
Kyeong-Hoon Park,
Gyeong-Min Kim,
Seung-Mo Kim,
ChungHwan Jeon
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00840
Subject(s) - petrography , coal , vitrinite , mineralogy , combustion , thermogravimetric analysis , geology , reactivity (psychology) , chemistry , analytical chemistry (journal) , materials science , environmental chemistry , organic chemistry , medicine , alternative medicine , pathology
Through the oxidation of coal at low temperatures and the resulting petrographic analysis, this study aims to predict spontaneous combustion, which has emerged as an industrial problem. Low-temperature oxidation analysis and the corresponding petrographic characteristics of four different coals treated under low temperatures of 25, 50, and 75 °C, which was set as the reactor temperature, were investigated. Low-temperature oxidation experiments designed at Pusan National University, based on papers related to low-temperature experiments, were conducted to analyze the constant of oxidation reactions. The petrographic characteristics of the coals were analyzed using a coal petrographic microscope spectrophotometer for determining their vitrinite reflectance and morphology, and the coals were extracted after the low-temperature oxidation experiments. After these analyses, vitrinite reflectance changed, and the normalized k , which is the difference between the constant of reaction from 25 °C to (the setting temperatures of) 50 and 75 °C, was also calculated. By comparing the oxidation rates of the coals and the corresponding petrographic analyses, the cause of spontaneous combustion can be deduced and a prediction can be made about which coal burns most efficiently at a low temperature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom