Enhanced Stability of Stable Isotopic Gases
Author(s) -
R. A. Socki,
Matt Matthew,
James P. McHale,
Jun Sonobe,
Megumi Isaji,
Tracey Jacksier
Publication year - 2020
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00839
Subject(s) - stability (learning theory) , stable isotope ratio , materials science , chemistry , physics , nuclear physics , computer science , machine learning
Pure gases and mixtures containing stable isotopes are used in a wide variety of applications including health care, food authentication, geochemistry, and environmental monitoring. It is therefore important to understand the role of moisture, which is one of the most critical impurities in compressed gas mixtures and pure gases, in their stability. Gaseous carbon dioxide (CO 2 ) was used as a proxy for the evaluation of the effects of its isotopic composition, when in contact with moisture throughout the depletion of a cylinder's contents, as well as pressure regulation and long-term stability. To accentuate the detrimental effects of moisture on CO 2 isotopic stability, enriched 18 O-water was added to natural-abundance, gaseous carbon dioxide. The δ 18 O-CO 2 changed from -23.16‰ vs Vienna Pee Dee Belemnite (VPDB) to +109‰ vs VPDB. It was further demonstrated that with appropriate cylinder preparation to reduce residual moisture, source material purity with low moisture content, and pressure regulation (from 57.0 down to 0.5 bar), both δ 13 C and δ 18 O remained consistent within ±0.04 and ±0.06‰, respectively, throughout the entire cylinder contents. Pressure reduction using a dual-stage regulator yielded statistically consistent results at the 99% confidence level from delivered pressures of 0.1-0.8 bar. Furthermore, the isotopic values remained consistent during a 1 year shelf-life study, illustrating the ability to utilize and regulate pressurized gases as working reference standard gases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom