z-logo
open-access-imgOpen Access
Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications
Author(s) -
Wahab O. Alabi,
Abdalla H. Karoyo,
Easwaran N. Krishnan,
Leila Dehabadi,
Lee D. Wilson,
Carey J. Simonson
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00762
Subject(s) - materials science , moisture , desiccant , composite material , adsorption , desorption , chemical engineering , fiber , gravimetric analysis , hvac , air conditioning , chemistry , mechanical engineering , organic chemistry , engineering
The adsorption-desorption behavior of flax fibers (FFs) is reported in this paper. FFs are a potential desiccant material for air-to-air energy wheels, which transfer heat and moisture in building heating, ventilation, and air conditioning (HVAC) systems. The raw FFs sample was subjected to physical modification, followed by complementary material characterization to understand the relationship between its structure and its moisture uptake performance. The surface and textural properties of the modified FFs were determined by gas adsorption (N 2 , H 2 O) and gravimetric liquid water swelling studies and further supported by spectroscopic (infrared and scanning electron microscopy) results. A FF-coated small-scale energy exchanger was used to determine the moisture transfer (or latent effectiveness; ε l ) using single-step and cyclic testing. The FF-coated exchanger had ε l values of ∼10 and 40% greater compared to similar exchangers coated with starch particles (SPs) and silica gel (SG) reported in a previous study. The enhanced surface and textural properties, along with the complex compositional structure of FFs and its greater propensity to swell in water, account for the improved performance over SPs. Thus, FFs offer an alternative low-cost, environment-friendly, and sustainable biodesiccant for air-to-air energy wheel applications in buildings. The current study contributes to an improved understanding of the structure-function relationship of biodesiccants for such energy wheel applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom