z-logo
open-access-imgOpen Access
Bioinspired Disordered Flexible Metasurfaces for Human Tear Analysis Using Broadband Surface-Enhanced Raman Scattering
Author(s) -
Vinayak Narasimhan,
Radwanul Hasan Siddique,
Haeri Park,
Hyuck Choo
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00677
Subject(s) - raman scattering , broadband , materials science , scattering , surface (topology) , raman spectroscopy , optics , physics , geometry , mathematics
Flexible surface-enhanced Raman scattering (SERS) has received attention as a means to move SERS-based broadband biosensing from bench to bedside. However, traditional flexible periodic nano-arrangements with sharp plasmonic resonances or their random counterparts with spatially varying uncontrollable enhancements are not reliable for practical broadband biosensing. Here, we report bioinspired quasi-(dis)ordered nanostructures presenting a broadband yet tunable application-specific SERS enhancement profile. Using simple, scalable biomimetic fabrication, we create a flexible metasurface (flex-MS) of quasi-(dis)ordered metal-insulator-metal (MIM) nanostructures with spectrally variable, yet spatially controlled electromagnetic hotspots. The MIM is designed to simultaneously localize the electromagnetic signal and block background Raman signals from the underlying polymeric substrate-an inherent problem of flexible SERS. We elucidate the effect of quasi-(dis)ordering on broadband tunable SERS enhancement and employ the flex-MS in a practical broadband SERS demonstration to detect human tear uric acid within its physiological concentration range (25-150 μM). The performance of the flex-MS toward noninvasively detecting whole human tear uric acid levels ex vivo is in good agreement with a commercial enzyme-based assay.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom