z-logo
open-access-imgOpen Access
Soybean Mutants Lacking Abundant Seed Storage Proteins Are Impaired in Mobilization of Storage Reserves and Germination
Author(s) -
Xiaoshuang Wei,
WonSeok Kim,
Bo Song,
Nathan W. Oehrle,
Shanshan Liu,
Hari B. Krishnan
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00128
Subject(s) - germination , storage protein , mobilization , mutant , biology , chemistry , botany , biochemistry , gene , history , archaeology
Spontaneous and radiation-induced mutants of soybean, despite loss of abundant seed proteins, have been reported to grow and reproduce normally without any apparent physiological abnormalities. Here, we report the development and characterization of a soybean line (BSH-2) that lacks several abundant seed storage proteins. One-dimensional and high-resolution two-dimensional gel electrophoresis revealed the absence of the α' and α subunits of β-conglycinin and G1, G2, G4, and G5 glycinin in the newly developed mutant line (BSH-2). Like our earlier developed soybean mutant line (BSH-3), the seeds of BSH-2 also accumulated high levels of free amino acids as compared with wild-type DN47 seeds. An examination of the germination rates revealed that both BSH-2 and BSH-3 had significantly lower germination rates compared with the parent line DN47. Two-dimensional gel electrophoresis analysis demonstrated that these mutants had slower rates of mobilization of seed storage proteins. The delayed mobilization of storage proteins in BSH-2 and BSH-3 seeds was also correlated with a delayed induction of proteolytic activity in the mutants when compared to DN47. Similarly, qRT-PCR analysis revealed distinct expression pattern of genes involved in proteolytic pathway in the mutants when compared to DN47. Transmission electron microscopy observation of soybean seeds at two germination stages revealed striking differences in the breakdown of protein storage vacuoles and lipid bodies in the mutants. Our study demonstrates that BSH-2 and BSH-3 are compromised in mobilization of storage reserves and the absence of abundant storage proteins may affect the seed germination efficiency and post-germinative seedling establishment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom