z-logo
open-access-imgOpen Access
Ultrafast Propulsion of Water Nanodroplets on Patterned Graphene
Author(s) -
Ermioni Papadopoulou,
Constantine M. Megaridis,
Jens Honoré Walther,
Petros Koumoutsakos
Publication year - 2019
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.9b00252
Subject(s) - graphene , materials science , nanotechnology , nanoscopic scale , wetting , water transport , contact angle , scaling , hysteresis , molecular dynamics , ultrashort pulse , chemical physics , composite material , optics , chemistry , water flow , environmental science , laser , physics , geometry , mathematics , computational chemistry , quantum mechanics , environmental engineering
The directed transport of liquids at the nanoscale is of great importance for nanotechnology applications ranging from water filtration to the cooling of electronics and precision medicine. Here we demonstrate such unidirectional, pumpless transport of water nanodroplets on graphene sheets patterned with hydrophilic/phobic areas inspired by natural systems. We find that spatially varying patterning of the graphene surfaces can lead to water transport at ultrafast velocities, far exceeding macroscale estimates. We perform extensive molecular dynamics simulations to show that such high transport velocities ( O(10 2 m/s)) are due to differences of the advancing and receding contact angles of the moving droplet. This contact angle hysteresis and the ensuing transport depend on the surface pattern and the droplet size. We present a scaling law for the driving capillary and resisting friction forces on the water droplet and use it to predict nanodroplet trajectories on a wedge-patterned graphene sheet. The present results demonstrate that graphene with spatially variable wettability is a potent material for fast and precise transport of nanodroplets with significant potential for directed nanoscale liquid transport and precision drug delivery.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom