z-logo
open-access-imgOpen Access
3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release
Author(s) -
Hakan Ceylan,
Immihan Ceren Yasa,
Öncay Yaşa,
Ahmet Fatih Tabak,
Joshua Giltinan,
Metin Sitti
Publication year - 2019
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.8b09233
Subject(s) - nanotechnology , drug delivery , 3d printed , materials science , controlled release , superparamagnetism , magnetic nanoparticles , nanorobotics , nanoparticle , chemistry , biophysics , biomedical engineering , medicine , physics , magnetization , quantum mechanics , magnetic field , biology
Untethered mobile microrobots have the potential to leverage minimally invasive theranostic functions precisely and efficiently in hard-to-reach, confined, and delicate inner body sites. However, such a complex task requires an integrated design and engineering, where powering, control, environmental sensing, medical functionality, and biodegradability need to be considered altogether. The present study reports a hydrogel-based, magnetically powered and controlled, enzymatically degradable microswimmer, which is responsive to the pathological markers in its microenvironment for theranostic cargo delivery and release tasks. We design a double-helical architecture enabling volumetric cargo loading and swimming capabilities under rotational magnetic fields and a 3D-printed optimized 3D microswimmer (length = 20 μm and diameter = 6 μm) using two-photon polymerization from a magnetic precursor suspension composed from gelatin methacryloyl and biofunctionalized superparamagnetic iron oxide nanoparticles. At normal physiological concentrations, we show that matrix metalloproteinase-2 (MMP-2) enzyme could entirely degrade the microswimmer in 118 h to solubilized nontoxic products. The microswimmer rapidly responds to the pathological concentrations of MMP-2 by swelling and thereby boosting the release of the embedded cargo molecules. In addition to delivery of the drug type of therapeutic cargo molecules completely to the given microenvironment after full degradation, microswimmers can also release other functional cargos. As an example demonstration, anti-ErbB 2 antibody-tagged magnetic nanoparticles are released from the fully degraded microswimmers for targeted labeling of SKBR3 breast cancer cells in vitro toward a potential future scenario of medical imaging of remaining cancer tissue sites after a microswimmer-based therapeutic delivery operation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom