Manipulating the Architecture of Atomically Thin Transition Metal (Hydr)oxides for Enhanced Oxygen Evolution Catalysis
Author(s) -
Yuhai Dou,
Lei Zhang,
Jiantie Xu,
ChunTing He,
Xun Xu,
Ziqi Sun,
Ting Liao,
Balázs Nagy,
Porun Liu,
Shi Xue Dou
Publication year - 2018
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.7b08691
Subject(s) - nanosheet , tafel equation , overpotential , materials science , nanomaterials , catalysis , nanotechnology , graphene , electrolyte , transition metal , durability , oxygen evolution , porosity , chemical engineering , electrode , electrochemistry , chemistry , composite material , biochemistry , engineering
Graphene-like nanomaterials have received tremendous research interest due to their atomic thickness and fascinating properties. Previous studies mainly focus on the modulation of their electronic structures, which undoubtedly optimizes the electronic properties, but is not the only determinant of performance in practical applications. Herein, we propose a generalized strategy to incrementally manipulate the architectures of several atomically thin transition metal (hydr)oxides, and study their effects on catalytic water oxidation. The results demonstrate the obvious superiority of a wrinkled nanosheet architecture in both catalytic activity and durability. For instance, wrinkled Ni(OH) 2 nanosheets display a low overpotential of 358.2 mV at 10 mA cm -2 , a high current density of 187.2 mA cm -2 at 500 mV, a small Tafel slope of 54.4 mV dec -1 , and excellent long-term durability with gradually optimized performance, significantly outperforming other nanosheet architectures and previously reported catalysts. The outstanding catalytic performance is mainly attributable to the 3D porous network structure constructed by wrinkled nanosheets, which not only provides sufficient contact between electrode materials and current collector, but also offers highly accessible channels for facile electrolyte diffusion and efficient O 2 escape. Our study provides a perspective on improving the performance of graphene-like nanomaterials in a wide range of practical applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom