Punctured Two-Dimensional Sheets for Harvesting Blue Energy
Author(s) -
Alessandro Aliprandi,
Dawid Pakulski,
Artur Ciesielski,
Paolo Samorı́
Publication year - 2017
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.7b06657
Subject(s) - pressure retarded osmosis , renewable energy , osmotic power , electricity , energy (signal processing) , process engineering , forward osmosis , environmental science , nanotechnology , reverse osmosis , membrane , engineering , materials science , electrical engineering , chemistry , physics , biochemistry , quantum mechanics
The challenges of global climate change and the world's growing demand for energy have brought the need for new renewable energy sources to the top of the international community's agenda. We have known for many centuries that energy is released upon mixing seawater and freshwater, yet it was just a few decades ago that it became clear how this energy can be converted into electricity instead of heat. As a result, the blue energy rush has raised and set new strategies in different science and technology sectors, leading to the construction of a new generation of plants and other technological investments. Among many approaches, pressure-retarded osmosis has emerged as a promising method to collect the largest amount of produced blue energy. In this Perspective, we highlight the advances in the development of ultrathin membranes based on two-dimensional materials. We discuss the most relevant synthetic methods devised to generate atomically thin membranes for pressure-retarded osmosis and retarded electrodialysis applications, and we provide some critical views on the greatest challenges in this thrilling research area.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom