z-logo
open-access-imgOpen Access
Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search
Author(s) -
Andrew J. Lee,
Masayuki Endo,
Jamie K. Hobbs,
Christoph Wälti
Publication year - 2017
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.7b06208
Subject(s) - molecule , homology (biology) , geometry , materials science , crystallography , nanotechnology , chemistry , physics , biology , mathematics , genetics , gene , quantum mechanics
Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we directly observe the widely debated mechanism of RecA homology searching at a single-molecule level using high-speed atomic force microscopy (HS-AFM) in combination with tailored DNA origami frames to present the reaction targets in a way suitable for AFM-imaging. We show that RecA nucleoprotein filaments move along DNA substrates via short-distance facilitated diffusions, or slides, interspersed with longer-distance random moves, or hops. Importantly, from the specific interaction geometry, we find that the double-stranded substrate DNA resides in the secondary DNA binding-site within the RecA nucleoprotein filament helical groove during the homology search. This work demonstrates that tailored DNA origami, in conjunction with HS-AFM, can be employed to reveal directly conformational and geometrical information on dynamic protein-DNA interactions which was previously inaccessible at an individual single-molecule level.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom