Preferential Alignment of Incommensurate Block Copolymer Dot Arrays Forming Moiré Superstructures
Author(s) -
Cong Jin,
Brian C. Olsen,
Erik J. Luber,
Jillian M. Buriak
Publication year - 2017
Publication title -
acs nano
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.7b00322
Subject(s) - materials science , moiré pattern , superstructure , fabrication , annealing (glass) , copolymer , nanotechnology , self assembly , hexagonal crystal system , layer (electronics) , optoelectronics , crystallography , optics , composite material , polymer , chemistry , physics , medicine , alternative medicine , pathology , thermodynamics
Block copolymer (BCP) self-assembly is of great interest as a cost-effective method for large-scale, high-resolution nanopattern fabrication. Directed self-assembly can induce long-range order and registration, reduce defect density, and enable access to patterns of higher complexity. Here we demonstrate preferential orientation of two incommensurate BCP dot arrays. A bottom layer of hexagonal silica dots is prepared via typical self-assembly from a PS-b-PDMS block copolymer. Self-assembly of a second, or top, layer of a different PS-b-PDMS block copolymer that forms a hexagonal dot pattern with different periodicity results in a predictable moiré superstructure. Four distinct moiré superstructures were demonstrated through a combination of different BCPs and different order of annealing. The registration force of the bottom layer of hexagonal dots is sufficient to direct the self-assembly of the top layer to adopt a preferred relative angle of rotation. Large-area helium ion microscopy imaging enabled quantification of the distributions of relative rotations between the two lattices in the moiré superstructures, yielding statistically meaningful results for each combination. It was also found that if the bottom layer dots were too large, the resulting moiré pattern was lost. A small reduction in the bottom layer dot size, however, resulted in large-area moiré superstructures, suggesting a specific size regime where interlayer registration forces can induce long-range preferential alignment of incommensurate BCP dot arrays.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom