In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals
Author(s) -
Zhiya Dang,
Javad Shamsi,
Francisco Palazón,
Muhammad Imran,
Quinten A. Akkerman,
Sungwook Park,
Giovanni Bertoni,
Mirko Prato,
Rosaria Brescia,
Liberato Manna
Publication year - 2017
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.6b08324
Subject(s) - materials science , nanocrystal , transmission electron microscopy , perovskite (structure) , electron beam processing , halide , electron diffraction , nanoparticle , irradiation , chemical physics , nanotechnology , crystallography , inorganic chemistry , chemistry , diffraction , optics , physics , nuclear physics
An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr 3 ) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr 3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb 2+ ions to Pb 0 . Subsequently Pb 0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr 3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr 3 lattice. The comparison among CsPbBr 3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb 0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom