z-logo
open-access-imgOpen Access
Generating in-Plane Orientational Order in Multilayer Films Prepared by Spray-Assisted Layer-by-Layer Assembly
Author(s) -
Rebecca Blell,
Xiaofeng Lin,
Tom Lindström,
Mikael Ankerfors,
Matthias Pauly,
Olivier Félix,
Gero Decher
Publication year - 2016
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.6b04191
Subject(s) - materials science , anisotropy , polarizer , birefringence , ellipsometry , layer (electronics) , optics , refractive index , cellulose , plane of incidence , composite material , nanotechnology , optoelectronics , thin film , chemistry , physics , plane wave , organic chemistry
We present a simple yet efficient method for orienting cellulose nanofibrils in layer-by-layer assembled films through spray-assisted alignment. While spraying at 90° against a receiving surface produces films with homogeneous in-plane orientation, spraying at smaller angles causes a macroscopic directional surface flow of liquid on the receiving surface and leads to films with substantial in-plane anisotropy when nanoscale objects with anisotropic shapes are used as components. First results with cellulose nanofibrils demonstrate that such fibrils are easily aligned by grazing incidence spraying to yield optically birefringent films over large surface areas. We show that the cellulosic nanofibrils are oriented parallel to the spraying direction and that the orientational order depends for example on the distance of the receiving surface from the spray nozzle. The alignment of the nanofibrils and the in-plane anisotropy of the films were independently confirmed by atomic force microscopy, optical microscopy between crossed polarizers, and the ellipsometric determination of the apparent refractive index of the film as a function of the in-plane rotation of the sample with respect to the plane of incidence of the ellipsometer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom