z-logo
open-access-imgOpen Access
Physicochemical and Immunological Assessment of Engineered Pure Protein Particles with Different Redox States
Author(s) -
Katelyn T. Gause,
Yan Yan,
Jiwei Cui,
Neil M. O’BrienSimpson,
Jason C. Lenzo,
Eric C. Reynolds,
Frank Caruso
Publication year - 2015
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.5b00393
Subject(s) - immunogenicity , ovalbumin , antigen , chemistry , immune system , biophysics , intracellular , materials science , microbiology and biotechnology , biology , biochemistry , immunology
The development of subunit antigen delivery formulations has become an important research endeavor, especially in cases where a whole cell vaccine approach has significant biosafety issues. Particle-based systems have shown particular efficacy due to their inherent immunogenicity. In some cases, fabrication techniques can lead to changes in the redox states of encapsulated protein antigens. By employing a uniform, well-characterized, single-protein system, it is possible to elucidate how the molecular details of particle-based protein antigens affect their induced immune responses. Using mesoporous silica-templated, amide bond-stabilized ovalbumin particles, three types of particles were fabricated from native, reduced, and oxidized ovalbumin, resulting in particles with different physicochemical properties and immunogenicity. Phagocytosis, transcription factor activation, and cytokine secretion by a mouse macrophage cell line did not reveal significant differences between the three types of particles. Oxidation of the ovalbumin, however, was shown to inhibit the intracellular degradation of the particles compared with native and reduced ovalbumin particles. Slow intracellular degradation of the oxidized particles was correlated with inefficient antigen presentation and insignificant levels of T cell priming and antibody production in vivo. In contrast, particles fabricated from native and reduced ovalbumin were rapidly degraded after internalization by macrophages in vitro and resulted in significant T cell and B cell immune responses in vivo. Taken together, the current study demonstrates how the redox state of a protein antigen significantly impacts the immunogenicity of the particulate vaccine formulations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom